A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators.
نویسندگان
چکیده
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes.
منابع مشابه
Genome-Wide Identification, Phylogeny, Duplication, and Expression Analyses of Two-Component System Genes in Chinese Cabbage (Brassica rapa ssp. pekinensis)
In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chines...
متن کاملMedicago truncatula CRE1 cytokinin receptor regulates nodulation and lateral root development.
The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...
متن کاملIN BRIEF Medicago truncatula CRE1 Cytokinin Receptor Regulates Nodulation and Lateral Root Development
The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...
متن کاملFunction and evolution of a Lotus japonicus AP2/ERF family transcription factor that is required for development of infection threads
Legume-rhizobium symbiosis is achieved by two major events evolutionarily acquired: root hair infection and organogenesis. Infection thread (IT) development is a distinct element for rhizobial infection. Through ITs, rhizobia are efficiently transported from infection foci on root hairs to dividing meristematic cortical cells. To unveil this process, we performed genetic screening using Lotus j...
متن کاملActivation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1.
Using in silico methods, several putative phytohormone-responsive cis-elements in the Oryza sativa non-symbiotic haemoglobin (NSHB) 1-4 and Arabidopsis thaliana NSHB1-2 promoters have been identified. An OsNSHB2 promoter::GUS reporter gene fusion shows tissue-specific expression in A. thaliana. GUS expression was observed in roots, the vasculature of young leaves, in flowers, and in the pedicel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 157 4 شماره
صفحات -
تاریخ انتشار 2011